9 research outputs found

    Exploring Refractory Organics in Extraterrestrial Particles

    Get PDF
    The origin of organic compounds detected in meteorites and comets, some of which could have served as precursors of life on Earth, remains an open question. The aim of the present study is to make one more step in revealing the nature and composition of organic materials of extraterrestrial particles by comparing infrared spectra of laboratory-made refractory organic residues to spectra of cometary particles returned by the Stardust mission, interplanetary dust particles, and meteorites. Our results reinforce the idea of a pathway for the formation of refractory organics through energetic and thermal processing of molecular ices in the solar nebula. There is also the possibility that some of the organic material had formed already in the parental molecular cloud before it entered the solar nebula. The majority of the IR “organic” bands of the studied extraterrestrial particles can be reproduced in the spectra of the laboratory organic residues. We confirm the detection of water, nitriles, hydrocarbons, and carbonates in extraterrestrial particles and link it to the formation location of the particles in the outer regions of the solar nebula. To clarify the genesis of the species, high-sensitivity observations in combination with laboratory measurements like those presented in this paper are needed. Thus, this study presents one more piece of the puzzle of the origin of water and organic compounds on Earth and motivation for future collaborative laboratory and observational projects

    A New Orbiting Deployable System for Small Satellite Observations for Ecology and Earth Observation

    Get PDF
    In this paper, we present several study cases focused on marine, oceanographic, and atmospheric environments, which would greatly benefit from the use of a deployable system for small satellite observations. As opposed to the large standard ones, small satellites have become an effective and affordable alternative access to space, owing to their lower costs, innovative design and technology, and higher revisiting times, when launched in a constellation configuration. One of the biggest challenges is created by the small satellite instrumentation working in the visible (VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired data depends on the physical dimension of the telescope and the antenna collecting the signal. In this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite architecture, once unfolded in space, can reach performances similar to those of larger satellites. In this study, we show how ecology and Earth Observations can benefit from data acquired by small satellites, and how they can be further improved thanks to deployable payloads. We focus on DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify its performances for Earth Observation studies

    Calathus: A sample-return mission to Ceres

    Get PDF
    Ceres, as revealed by NASA's Dawn spacecraft, is an ancient, crater-saturated body dominated by low-albedo clays. Yet, localised sites display a bright, carbonate mineralogy that may be as young as 2 Myr. The largest of these bright regions (faculae) are found in the 92 km Occator Crater, and would have formed by the eruption of alkaline brines from a subsurface reservoir of fluids. The internal structure and surface chemistry suggest that Ceres is an extant host for a number of the known prerequisites for terrestrial biota, and as such, represents an accessible insight into a potentially habitable “ocean world”. In this paper, the case and the means for a return mission to Ceres are outlined, presenting the Calathus mission to return to Earth a sample of the Occator Crater faculae for high-precision laboratory analyses. Calathus consists of an orbiter and a lander with an ascent module: the orbiter is equipped with a high-resolution camera, a thermal imager, and a radar; the lander contains a sampling arm, a camera, and an on-board gas chromatograph mass spectrometer; and the ascent module contains vessels for four cerean samples, collectively amounting to a maximum 40 g. Upon return to Earth, the samples would be characterised via high-precision analyses to understand the salt and organic composition of the Occator faculae, and from there to assess both the habitability and the evolution of a relict ocean world from the dawn of the Solar System.The attached document is the authors’ final accepted version of the journal article provided here with a Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Creative Commons Licence. You are advised to consult the publisher’s version if you wish to cite from it.

    Micro-tomographie infrarouge pour la caractérisation de matériaux extraterrestres

    No full text
    Laboratory based studies of extraterrestrialmaterials derived from primitive objectsis fundamental to improve our knowledgeabout the formation and the evolutionof the Solar System as well as for interpretingobservations collected by spacecraftand landers. Precise laboratory analysesof samples obtained from sample returnmissions are essential to understand theconditions and the physico-chemical processes,which lead to the formation of thesmall bodies and planets. The aim of thisinterdisciplinary thesis was to exploit theinfrared imaging and to implement threedimensionalFourier transform infrared microtomographyto study different extraterrestrialmaterials (meteorites and asteroidaldust). Moreover, X-ray tomographywas used to determine the precise shape ofthe samples. With these analytical methods,we have characterized the compositionof extraterrestrial materials withoutdestroying them at very high resolution.We have studied the post-accretional effects,such as aqueous alteration inside theparent’s bodies or space weathering at thesurface of asteroids, on both the mineraland the organic components. In particular,we studied the correlations between the organicmaterials and the minerals observedin the sample, which is fundamental to understandthe origin and the evolution of theorganic matter.L’étude en laboratoire d’échantillons extraterrestres, issus d’objets primitifs, est fondamentale aussi bien pour améliorer notre connaissance de la formation et de l’évolution de notre Système Solaire que pour interpréter les observations faites par les missions spatiales.Des analyses précises en laboratoire de ces échantillons sont essentielles pour comprendre les conditions physico-chimiques qui ont mené à la formation des petits corps et des planètes. Le but de cette thèse interdisciplinaire a été d’exploiter l’imagerie infrarouge et de développer un dispositif de microtomographie en spectroscopie infrarouge à transformée de Fourrier.Nous étudierons des fragments de météorites et de poussières astéroïdales. De plus, la tomographie en rayons X a été utilisée pour contraindre précisément la forme de l’échantillon. Avec ces analyses, nous avons caractérisé la composition de matériaux extraterrestres à très petite échelle sans les détruire. Nous avons étudié l’effet des processus post-accrétionels, comme l’altération spatiale, à l’intérieur du corps parent, ou l’altération spatiale, à la surface de l’astéroïde, à la fois sur les parties minérale et organique. En particulier,nous avons pu grâce à cette expérience,étudier la corrélation spatiale de la matière minérale et organique, ce qui est fondamental pour comprendre l’origine et l‘évolution de la matière organique

    X‐ray computed tomography: Morphological and porosity characterization of giant Antarctic micrometeorites

    No full text
    Giant micrometeorites (MMs; 400–2000 μm) are exceedingly rare and scientifically valuable. Three-dimensional nondestructive characterization by X-ray computed tomography (X-CT) provides information on the petrography and thus petrogenesis of MMs and serves as a guide to maximize subsequent multi-analytical studies on such precious planetary materials. Here, we discuss the results obtained by X-CT on 22 giant MMs and the classification based on their 3-D density contrast images. Scoriaceous and unmelted MMs have distinct porosity ranges (10–40 vol% versus 0–25 vol%, respectively). We observe a porosity variation inside scoriaceous MMs, which allows their atmospheric entry flight history to be resolved. For the first time, spinning entry is explicitly demonstrated for four partially melted MMs. Furthermore, we are able to resolve the thermal gradient in a single particle, based on porosity variation (seen as a progressive increase in pore abundance and size with higher peak temperatures). Moreover, we explore parent body alteration through the 3-D analysis of pores distribution, showing that shock fabrics are either absent or weakly developed in our data set. Finally, owing to the detection of pseudomorphic chondrules, we estimate that the intensively aqueously altered C1 or CIlike material could represent 18% of the MM flux at this size fraction (400–1000 μm)

    A preparation sequence for multi‐analysis of µm‐sized extraterrestrial and geological samples

    No full text
    International audienceWith the recent and ongoing sample return missions and/or the developments of nano-to microscale 3-D and 2-D analytical techniques, it is necessary to develop sample preparation and analysis protocols that allow combination of different nanometer-to micrometer-scale resolution techniques and both maximize scientific outcome and minimize sample loss and contamination. Here, we present novel sample preparation and analytical procedures to extract a maximum of submicrometer structural, mineralogical, chemical, molecular, and isotopic information from micrometric heterogeneous samples. The sample protocol goes from a nondestructive infrared (IR) tomography of~10 to~70 µm-sized single grains, which provides the distribution and qualitative abundances of both mineral and organic phases, followed by its cutting in several slices at selected sites of interest for 2-D mineralogical analysis (e.g., transmission electron microscopy), molecular organic and mineral analysis (e.g., Raman and/or IR microspectroscopy), and isotopic/chemical analysis (e.g., NanoSIMS). We also discuss here the importance of the focused ion beam microscopy in the protocol, the problems of sample loss and contamination, and at last the possibility of combining successive different analyses in various orders on the same micrometric sample. Special care was notably taken to establish a protocol allowing correlated NanoSIMS/TEM/IR analyses with NanoSIMS performed first. Finally, we emphasize the interest of 3-D and 2-D IR analyses in studying the organics-minerals relationship in combination with more classical isotopic and mineralogical grain characterizations

    Combining IR and X-ray microtomography data sets: application to Itokawa particles and to Paris meteorite

    No full text
    International audienceIn the near future, a new generation of sample return missions (Hayabusa2, OSIRIS-REx, MMX, etc.) will collect samples from small solar system bodies. To maximize the scientific outcome of laboratory studies and minimize the loss of precious extraterrestrial samples, an analytical sequence from less destructive to more destructive techniques needs to be established. In this work, we present a combined X-ray and IR microtomography applied to five Itokawa particles and one fragment of the primitive carbonaceous chondrite Paris. We show that this analytical approach is able to provide a 3-D physical and chemical characterization of individual extraterrestrial particles, using the measurement of their 3-D structure and porosity, and the detection of mineral and organic phases, and their spatial co-localization in 3-D. We propose these techniques as an efficient first step in a multitechnique analytical sequence on microscopic samples collected by space missions

    Three‐dimensional multiscale assembly of phyllosilicates, organics, and carbonates in small Ryugu fragments

    No full text
    International audienceWe report μm‐scale nondestructive infrared (IR) hyperspectral results (IR computed tomography, IR‐CT) in 3‐D and IR surface imaging, IR‐S) in 2‐D, at SOLEIL) combined with X‐ray nano‐computed tomography analyses (at SPring‐8) performed on eight small Ryugu fragments extracted from mm‐sized grains coming both from touchdown first and second sites. We describe the multiscale assembly of phyllosilicates, carbonates, sulfides, oxides, and organics. Two types of silicates, as well as diverse kinds of organic matter, were detected inside Ryugu material. Their spatial correlations are described to discuss the role of the mineralogical microenvironments in the formation/evolution of organic matter. In particular, we have shown that there is a redistribution of the organic matter diffuse component during aqueous alteration on the parent body, with a preferential circulation among fine‐grained phyllosilicates
    corecore